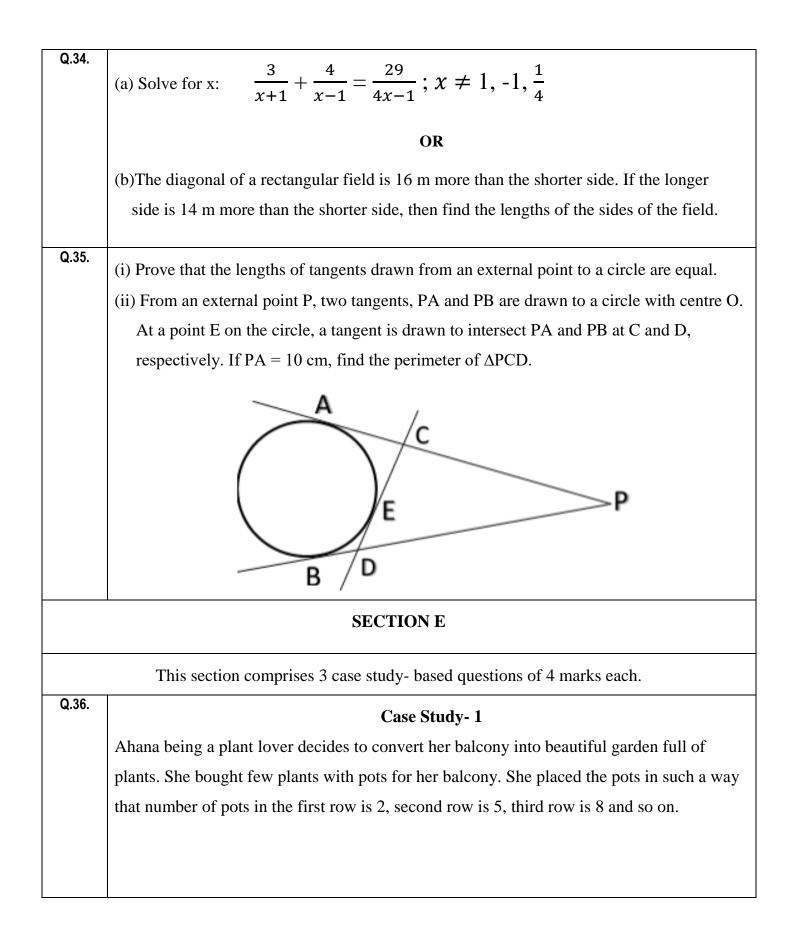
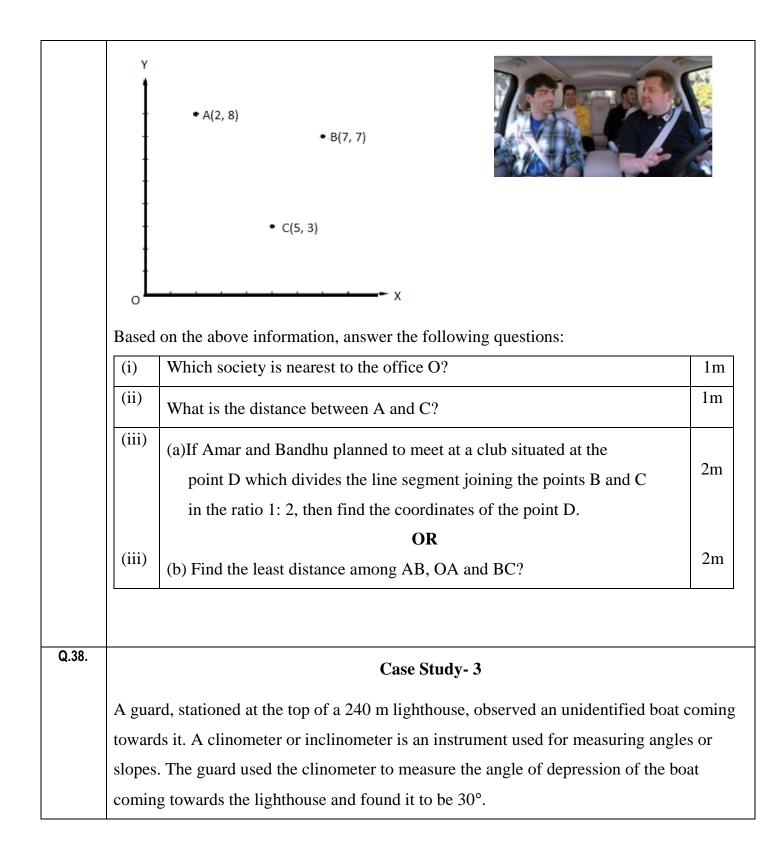

V								ISWKP1/041/2
				SCHOOL AL V				
				ehearsal Examin FHEMATICS S		· ,		
Date: 05	5-12-2			Set 2			Ma	aximum marks: 80
Class: X							Ti	me: 3 hours
General	l Instr	uctions:						
Read the	e follov	ving instructions ve	ry car	efully and strictly f	follow	them:		
(i) '	This qu	estion paper contai	ns 38	questions. All ques	stions	are compulsory.		
(ii)	This q	uestion paper is div	ided i	nto five Sections A	, B , C	C, D and E.		
(iii)	In Sec	tion A, Questions r	1 to	o 18 are multiple cl	hoice	questions (MCQs)	and q	uestions number
	19 and	20 are Assertion-F	Reason	based questions o	f 1 ma	ark each.		
(iv)	In Sec	tion B, Questions n	io. 21	to 25 are very shor	t answ	ver (VSA) type que	estions	s, carrying
	2 mark	ts each.						
(v)	In Sec	tion C, Questions r	no. 26	to 31 are short ans	wer (S	SA) type questions,	carry	ing 3 marks each.
(vi)	In Sec	tion D, Questions r	no. 32	to 35 are long answ	ver (L	A) type questions	carryi	ng 5 marks each.
(vii)	In Sec	tion E, Questions n	io. 36	to 38 are case study	y-base	ed questions carryin	ng 4 n	narks each.
	Interna	al choice is provide	d in 2	marks questions in	each	case-study.		
(viii)	There	is no overall choice	e. How	vever, an internal cl	hoice	has been provided	in 2 q	uestions in
	Section	n B, 2 questions in	Sectio	n C, 2 questions in	Secti	on D and 3 questio	ons in	Section E.
(ix)	Draw	neat diagrams wher	ever r	equired. Take π =	$\frac{22}{7}$ wh	nerever required, if	not s	tated.
(x)	Use of	calculators is not a	allowe	d.				
				SECTION	A			
		Sectio	on A c	consists of 20 ques	stions	of 1 mark each.		
Q.1.	Whi	ch of the followin	g can	not be the probab	ility o	of an event?		
	(A)	$\frac{1}{3}$	(B)	0.1	(C)	3%	(D)	$\frac{17}{16}$

Q.2.	In given fig, O is the centre of a circle. If the area of the sector OAPB is $\frac{5}{36}$ times the area									
	of the circle, what is the value of x.									
				A	O x P	В				
	(A)	70°	(B)	60°	(C)	50°	(D)	80°		
Q.3.	The mean and median of a frequency distribution are 12 and 15 respectively. The mode of the distribution is									
	(A)	13.5	(B)	21	(C)	6	(D)	14		
Q.4.	The pair of equations $ax + 2y = 9$ and $3x + by = 18$ represents parallel lines, where a, b are integers if									
	(A)	a = b	(B)	3a = 2b	(C)	ab = 6	(D)	2a = 3b		
Q.5.	In what ratio, does x-axis divide the line segment joining the points A (3, 6) and B (-12, -3)?									
	(A)	1:2	(B)	1:4	(C)	4: 1	(D)	2: 1		
Q.6.	In a formula racing competition, the time taken by two racing cars A and B to complete one round of the track is 30 minutes and p minutes respectively. If the cars meet again at the starting point for the first time after 90 minutes and the HCF (30, p) = 15, then the value of p is									
	(A)	45 minutes	(B)	60 minutes	(C)	75 minutes	(D)	180 minutes		
Q.7.	If 2 :	sin $2A = \sqrt{3}$, then	ΖA	is equal to	ſ		ſ			
	(A)	60°	(B)	45°	(C)	30°	(D)	90°		

Q.8.	PQ i	s a line segment s	uch tl	nat the y-coordina	te of	P is -1 and Q lie	es on	the y-axis.		
	The	midpoint of PQ is	R (-3	3, -6). Then the co	ordir	nates of Q are				
	(A)	(-11, 0)	(B)	(-5, 0)	(C)	(0, -11)	(D)	(0, -5)		
Q.9.	If x :	$=$ r sin θ and y $=$ r	cos é	θ, then the value α	of x^2	$+ y^2$ is				
	(A)	r	(B)	r^2	(C)	$\frac{1}{r}$	(D)	1		
Q.10.		number of revolut 76 m is:	tions	made by a circula	r whe	eel of radius 0.7 n	n in c	overing a distance		
	(A)	24	(B)	22	(C)	75	(D)	40		
Q.11.	If the sum of first n terms of an A.P is $3n^2$ + n and its common difference is 6, then its first term is									
	(A)	2	(B)	3	(C)	1	(D)	4		
Q.12.		the figure below, the figure below the figure below the figure below the figure the figure the figure below				-				
		If $AB = 12 \sqrt{3}m$, then the angle of elevation of the top of the tree from her eyes is D C E C B								
	(A)	45°	(B)	30°	(C)	60°	(D)	90°		
Q.13.	The	value(s) of k for v	vhich	the roots of the q	uadra	atic equation x^2 +	4x +	k = 0 are real, is		
	(A)	$k \ge 4$	(B)	$k \leq 4$	(C)	$k \ge -4$	(D)	$k \leq -4$		



Q.18.	Two	scalene triangles	are g	iven below.						
		G	_	P 3 cm R	в∠	A 3 cm	C			
	Anas and Rishi observed them and said the following: A page $ABOB$ is similar to $ACBA$ Bisbi $ABOB$ is construct to $ACBA$									
	Anas: $\triangle PQR$ is similar to $\triangle CBA$ Rishi: $\triangle PQR$ is congruent to $\triangle CBA$ Which of them is/are correct?									
	(A)	Only Anas	(B)	Only Rishi	(C)	Both Anas and Rishi	(D)	Neither of them		
		stions number 19				_				
	each. Two statements are given, one labelled as Assertion (A) and the other is labelled as Beason (B). Select the correct answer to these questions from the codes (a). (b). (c) and (d)									
	Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.									
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct									
	explanation of Assertion (A)									
	(b) Both Assertion (A) and Reason (R) are true and Reason (R) is <i>not</i> the correct									
	explanation of Assertion (A)									
	(c) Assertion (A) is true but reason (R) is false.									
	(d) Assertion (A) is false but reason (R) is true.									
Q.19.	Asse	ertion (A): PA and	1 PB	are tangents to the	e circ	le centered at O a	nd ∠	OPA = 30°.		
	Then \triangle PAB is an equilateral triangle.									
	Reason (R): The angle between two tangents drawn from an external point to a circle is									
	complementary to the angle subtended by the line segment joining the points									
		of contac	et at t	he centre.						
Q.20.	Asse	ertion (A): The su	m of	first 100 natural 1	numb	ers is 5050.				
	Rea	son (R): The sum	of fir	st n natural numb	ers is	$\frac{n(n+1)}{2}.$				
	1					۷.				


	SECTION B
	Section B consists of 5 questions of 2 marks each.
Q.21.	A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability that the card drawn is (i) not an ace (ii) either a king or a queen
Q.22.	 (a) The length of the minute-hand of a clock is 14 cm. Find the area swept by the minute hand in 20 minutes. OR
	(b)Area of a sector of a circle of radius 36 cm is $54\pi \ cm^2$. Find the length of the corresponding arc of the sector.
Q.23.	(a) If $\tan (A + B) = \sqrt{3}$ and $\tan (A - B) = \frac{1}{\sqrt{3}}$; $0^{\circ} < A + B < 90^{\circ}$; $A > B$, find A and B
	OR (b)Find the value of \boldsymbol{x} : $2cosec^2 30^\circ + \boldsymbol{x} sin^2 60^\circ - \frac{3}{4} tan^2 30^\circ = 10$
Q.24.	Renu purchases two bags of fertilizer of weights 69 kg and 75 kg. Find the maximum value of weight which can measure the weight of the fertilizer exact number of times.
Q.25.	In the given figure, O is the centre of circle. Find $\angle AQB$, given that PA and PB are tangents to the circle and $\angle APB=75^{\circ}$. P P B C B C C C C C C C C C C C C C C C

				SECTIC	ON C								
		Sect	ion C consi	sts of 6 que	stions of 3 m	arks each.							
Q.26.	If the median of the following data is 240, then find the value of the missing frequency f :												
	Classes	0 -100	100 -200	200 - 300	300 -400	400 - 500	500 - 600	600 - 700					
	Frequency	15	17	f	12	9	5	2					
Q.27.	If α and β are the zeroes of the polynomial $p(x) = 2x^2 + 5x + k$ satisfying the relation, $\alpha^2 + \beta^2 + \alpha \beta = \frac{21}{4}$, then find the value of k.												
Q.28.	(a) If the system of linear equations $2x + 3y = 7$ and $2ax + (a + b) y = 28$ have infinite number of solutions, then find the values of 'a' and 'b'.												
		6.1		C .	OR .	0 7 1 1							
	(b)The ratio expenditu		-		-								
Q.29.	expenditures are 4: 3. If each of them saves ₹ 2000 monthly, find their incomes. Prove that $\frac{\cot A - \cos A}{\cot A + \cos A} = \frac{\cos^2 A}{(1+\sin A)^2}$												
Q.30.	Show that $5 + 2\sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.												
Q.31.	(a) If AD an	d PM are	e medians o	of triangles	ABC and P	QR, respecti	vely where						
	ΔABC~	∆PQR, p	rove that $\frac{1}{2}$	$\frac{AB}{PQ} = \frac{AD}{PM} \; .$									
					OR								
	(b)The diago		-			ch other at th	ne point O su	uch that					
	$\frac{AO}{BO} = \frac{CO}{DO}.$ S	how that	ABCD is a	a trapezium	•								

			SECTION D									
	Sect	ion D consists	of 4 questions	s of 5 marks ea	ach.							
Q.32.	(a) In the given figure, a decorative block is shown which is made of two solids, a cube and a hemisphere. The base of the block is a cube with edge 6 cm and the hemisphere											
	fixed on the top has a diameter of 4.2 cm.											
	Find (i) the total	surface area o	of the block		4.2 cr	n						
	(ii) the volu	me of the blo	ck formed.	6 cm	6 cm	6 cm						
	OR											
	(b)A circus tent is in the shape of a cylinder surmounted by a conical top of same diameter.											
	If their common diameter is 56 m, the height of cylindrical part is 6 m and the total											
	Height of the tent above the ground is 27 m, find the area of canvas used to make the											
	tent keeping a provision of $64m^2$ of canvas for stitching and wastage. Also, find the											
	cost of the canvas	to be purchas	ed at the rate	of ₹ 120 per <i>r</i>	n ² .							
Q.33.	250 apples in a box were weighed and the distribution of masses of the apples is given in the following table:											
	Mass (in grams)	80 - 100	100 - 120	120 - 140	140 - 160	160 - 180						
	No. of apples	20	60	70	40	60						
	Find the mean and n	nodal mass of	the apples:									

Based	I on the above information, answer the following questions:	
(i)	Find the number of pots placed in the 10 th row.	1m
(ii)	Find the difference in the number of pots placed in the 5 th row and 2 nd row.	1m
(iii)	 (a) If Ahana wants to place 100 pots in total, then find the total number of rows formed in the arrangement. OR 	2m
(iii)	(b) If Ahana has sufficient space for 12 rows, then how many total number of pots are placed by her with the same arrangement?	2m
Carpo	Case Study – 2 boling: It is the sharing of car journeys so that more than one person travels in	a car
Three A, B a	revents the need for others to have to drive to a location themselves. friends Amar, Bandhu and Chakradev lives in societies represented by the po and C respectively. They all work in offices located in the same building repre e point O (0, 0). Since they all go to same building every day, they decided to o oling to save money on petrol.	esente

Based on the above information, answer the following questions:

(i)	Make labelled figure on the basis of the given information.	1m
(ii)	Calculate the distance of the boat from the foot of the lighthouse.	1m
(iii)	(a)After 10 minutes, the guard observed that the boat was approaching the lighthouse and its distance from the lighthouse is reduced by	2m
	$240(\sqrt{3}-1)$ m. He immediately raised the alarm. What was the new	
	angle of depression of the boat from the top of the lighthouse?	
	OR	
(iii)	(b) Find the distance of the boat from the lighthouse if the angle of	
	depression of the boat coming towards the lighthouse is found to be 60°.	2m
	(Use $\sqrt{3} = 1.73$)	
