INDIAN SCHOOL AL WADI AL KABIR

First Rehearsal Examination (2023-24)

Sub: MATHEMATICS STANDARD (041)

Date: 05-12-2023
Set 2
Maximum marks: 80 Time: 3 hours
Class: X
General Instructions:
Read the following instructions very carefully and strictly follow them:
(i) This question paper contains 38 questions. All questions are compulsory.
(ii) This question paper is divided into five Sections A, B, C, D and E.
(iii) In Section A, Questions no. $\mathbf{1}$ to $\mathbf{1 8}$ are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each.
(iv) In Section B, Questions no. 21 to 25 are very short answer (VSA) type questions, carrying 2 marks each.
(v) In Section C, Questions no. 26 to 31 are short answer (SA) type questions, carrying 3 marks each.
(vi) In Section D, Questions no. 32 to 35 are long answer (LA) type questions carrying 5 marks each.
(vii) In Section E, Questions no. $\mathbf{3 6}$ to $\mathbf{3 8}$ are case study-based questions carrying $\mathbf{4}$ marks each.

Internal choice is provided in $\mathbf{2}$ marks questions in each case-study.
(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in

Section B, 2 questions in Section C, 2 questions in Section D and 3 questions in Section E.
(ix) Draw neat diagrams wherever required. Take $\pi=\frac{22}{7}$ wherever required, if not stated.
(x) Use of calculators is not allowed.

SECTION A

Section A consists of 20 questions of 1 mark each.							
Q.1.	Which of the following cannot be the probability of an event?						
	(A)	$\frac{1}{3}$	(B)	0.1	(C)	3%	(D)

Q.2.	In given fig, O is the centre of a circle. If the area of the sector OAPB is $\frac{5}{36}$ times the area of the circle, what is the value of x.							
	(A)	70°	(B)	60°	(C)	50°	(D)	80°
Q.3.	The mean and median of a frequency distribution are 12 and 15 respectively. The mode of the distribution is							
	(A)	13.5	(B)	21	(C)	6	(D)	14
Q.4.	The pair of equations $a x+2 y=9$ and $3 x+b y=18$ represents parallel lines, where a, b are integers if							
	(A)	$\mathrm{a}=\mathrm{b}$	(B)	$3 \mathrm{a}=2 \mathrm{~b}$	(C)	$a b=6$	(D)	$2 \mathrm{a}=3 \mathrm{~b}$
Q.5.	In what ratio, does x-axis divide the line segment joining the points $A(3,6)$ and B ($-12,-3$) ?							
	(A)	1: 2	(B)	1: 4	(C)	4: 1	(D)	2: 1
Q.6.	In a formula racing competition, the time taken by two racing cars A and B to complete one round of the track is 30 minutes and p minutes respectively. If the cars meet again at the starting point for the first time after 90 minutes and the $\operatorname{HCF}(30, p)=15$, then the value of p is							
	(A)	45 minutes	(B)	60 minutes	(C)	75 minutes	(D)	180 minutes
Q.7.	If $2 \sin 2 \mathrm{~A}=\sqrt{3}$, then $\angle \mathrm{A}$ is equal to							
	(A)	60°	(B)	45°	(C)	30°	(D)	90°

Q.8.	PQ is a line segment such that the y -coordinate of P is -1 and Q lies on the y -axis. The midpoint of PQ is $\mathrm{R}(-3,-6)$. Then the coordinates of Q are							
	(A)	$(-11,0)$	(B)	$(-5,0)$	(C)	(0, -11)	(D)	$(0,-5)$
Q.9.	If $\mathrm{x}=\mathrm{r} \sin \theta$ and $\mathrm{y}=\mathrm{r} \cos \theta$, then the value of $x^{2}+y^{2}$ is							
	(A)	r	(B)	r^{2}	(C)	$\frac{1}{r}$	(D)	1
Q.10.	The number of revolutions made by a circular wheel of radius 0.7 m in covering a distance of 176 m is:							
	(A)	24	(B)	22	(C)	75	(D)	40
Q.11.	If the sum of first n terms of an A.P is $3 n^{2}+\mathrm{n}$ and its common difference is 6 , then its first term is							
	(A)	2	(B)	3	(C)	1	(D)	4
Q.12.	In the figure below, the height of the girl is 1.5 m and the height of the tree is 13.5 m . If $\mathrm{AB}=12 \sqrt{3} \mathrm{~m}$, then the angle of elevation of the top of the tree from her eyes is							
	(A)	45°	(B)	30°	(C)	60°	(D)	90°
Q.13.	The value(s) of k for which the roots of the quadratic equation $x^{2}+4 x+\mathrm{k}=0$ are real, is							
	(A)	$\mathrm{k} \geq 4$	(B)	$\mathrm{k} \leq 4$	(C)	$\mathrm{k} \geq-4$	(D)	$\mathrm{k} \leq-4$

Q.14.	Two different dice are thrown together. The probability of getting the sum of the two numbers less than 7 is							
	(A)	$\frac{7}{12}$	(B)	$\frac{5}{12}$	(C)	$\frac{3}{11}$	(D)	$\frac{5}{11}$
Q.15.	The graph of $y=p(x)$ is given in the figure below. Zeroes of the polynomial $p(x)$ a							
	(A)	- $\frac{5}{2}, \frac{7}{2}$	(B)	$-5,0,7$	(C)	$-5,-\frac{5}{2}, \frac{7}{2}, 7$	(D)	$-5,7$
Q.16.	Two cubes each with 5 cm edge are joined end to end. The surface area of the resulting cuboid is							
	(A)	$600 \mathrm{~cm}^{2}$	(B)	$150 \mathrm{~cm}^{2}$	(C)	$250 \mathrm{~cm}^{2}$	(D)	$300 \mathrm{~cm}^{2}$
Q.17.		iven figure AO is equ	an	are tang A.	o a	e centered	If	$\mathrm{D}=120^{\circ}$
	(A)	30°	(B)	45°	(C)	60°	(D)	90°

SECTION B

Section B consists of 5 questions of 2 marks each.

Q.21.	A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability that the card drawn is (i) not an ace (ii) either a king or a queen
Q.22.	(a) The length of the minute-hand of a clock is 14 cm . Find the area swept by the minute hand in 20 minutes. OR (b)Area of a sector of a circle of radius 36 cm is $54 \pi \mathrm{~cm}^{2}$. Find the length of the corresponding arc of the sector.
Q.23.	(a) If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}} ; 0^{\circ}<A+B<90^{\circ} ; A>B$, find A and B OR (b)Find the value of \boldsymbol{x} : $2 \operatorname{cosec}^{2} 30^{\circ}+x \sin ^{2} 60^{\circ}-\frac{3}{4} \tan ^{2} 30^{\circ}=10$
Q.24.	Renu purchases two bags of fertilizer of weights 69 kg and 75 kg . Find the maximum value of weight which can measure the weight of the fertilizer exact number of times.
Q.25.	In the given figure, O is the centre of circle. Find $\angle A Q B$, given that $P A$ and $P B$ are tangents to the circle and $\angle \mathrm{APB}=75^{\circ}$.

SECTION C								
Section C consists of 6 questions of $\mathbf{3}$ marks each.								
Q.26.	If the median of the following data is 240 , then find the value of the missing frequency \boldsymbol{f} :							
	Classes	0-100	100-200	200-300	300-400	400-500	500-600	600-700
	Frequency	15	17	f	12	9	5	2
Q.27.	If α and β are the zeroes of the polynomial $\mathrm{p}(\mathrm{x})=2 x^{2}+5 \mathrm{x}+\mathrm{k}$ satisfying the relation, $\alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}$, then find the value of k .							
	(a) If the system of linear equations $2 x+3 y=7$ and $2 a x+(a+b) y=28$ have infinite number of solutions, then find the values of ' a ' and ' b '. OR (b)The ratio of the monthly incomes of two persons is 9:7 and the ratio of their expenditures are 4: 3. If each of them saves ₹ 2000 monthly, find their incomes.							
Q.29.	Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\cos ^{2} A}{(1+\sin A)^{2}}$							
Q.30.	Show that $5+2 \sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.							
Q.31.	(a) If AD and PM are medians of triangles ABC and PQR , respectively where $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$. OR (b)The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.							

SECTION D

Section D consists of 4 questions of 5 marks each.

Q.32.	(a) In the given figure, a decorative block is shown which is made of two solids, a cube and a hemisphere. The base of the block is a cube with edge 6 cm and the hemisphere fixed on the top has a diameter of 4.2 cm . Find (i) the total surface area of the block (ii) the volume of the block formed. OR (b)A circus tent is in the shape of a cylinder surmounted by a conical top of same diameter. If their common diameter is 56 m , the height of cylindrical part is 6 m and the total Height of the tent above the ground is 27 m , find the area of canvas used to make the tent keeping a provision of $64 m^{2}$ of canvas for stitching and wastage. Also, find the cost of the canvas to be purchased at the rate of $₹ 120$ per m^{2}.
Q.33.	250 apples in a box were weighed and the distribution of masses of the apples is given in the following table:

Mass (in grams)	$80-100$	$100-120$	$120-140$	$140-160$	$160-180$
No. of apples	20	60	70	40	60

Find the mean and modal mass of the apples:

Q.34.	(a) Solve for $\mathrm{x}: \quad \frac{3}{x+1}+\frac{4}{x-1}=\frac{29}{4 x-1} ; x \neq 1,-1, \frac{1}{4}$ OR (b)The diagonal of a rectangular field is 16 m more than the shorter side. If the longer side is 14 m more than the shorter side, then find the lengths of the sides of the field.
Q.35.	(i) Prove that the lengths of tangents drawn from an external point to a circle are equal. (ii) From an external point P , two tangents, PA and PB are drawn to a circle with centre O . At a point E on the circle, a tangent is drawn to intersect PA and PB at C and D , respectively. If $\mathrm{PA}=10 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{PCD}$.
	SECTION E
	This section comprises 3 case study- based questions of 4 marks each.
Q.36.	Case Study- 1 Ahana being a plant lover decides to convert her balcony into beautiful garden full of plants. She bought few plants with pots for her balcony. She placed the pots in such a way that number of pots in the first row is 2 , second row is 5 , third row is 8 and so on.

